Optimized 3D ultrashort echo time pulmonary MRI.
نویسندگان
چکیده
PURPOSE To optimize 3D radial ultrashort echo time MRI for high resolution whole-lung imaging. METHODS 3D radial ultrashort echo time was implemented on a 3T scanner to investigate the effects of: (1) limited field-of-view excitation, (2) variable density readouts, and (3) radial oversampling. Improvements in noise performance and spatial resolution were assessed through simulation and phantom studies. Their effects on lung and airway visualization in five healthy male human subjects (mean age 32 years) were compared qualitatively through blinded ordinal scoring by two cardiothoracic radiologists using a nonparametric Friedman test (P < 0.05). Relative signal difference between endobronchial air and adjacent lung tissue, normalized to nearby vessel, was used as a surrogate for lung tissue signal. Quantitative measures were compared using the paired Student's t-test (P < 0.05). Finally, clinical feasibility was investigated in a patient with interstitial fibrosis. RESULTS Simulation and phantom studies showed up to 67% improvement in SNR and reduced blurring for short T2* species using all three optimizations. In vivo images showed decreased artifacts and improved lung tissue and airway visualization both qualitatively and quantitatively. CONCLUSION The use of limited field-of-view excitation, variable readout gradients, and radial oversampling significantly improve the technical quality of 3D radial ultrashort echo time lung images.
منابع مشابه
Preliminary use of a double-echo pulse sequence with 3D ultrashort echo time in the MRI of bones and joints
The aim of the present study was to investigate the application of a double-echo pulse sequence with 3D ultrashort echo time (UTE) in the magnetic resonance imaging (MRI) of bones and joints. In total, 7 healthy volunteers and 1 volunteer with a suspected tear of the lateral meniscus of the left knee joint underwent MRI with a double-echo pulse sequence and 3D UTE. The imaging was performed on ...
متن کاملUltrashort echo time MRI of pulmonary water content: assessment in a sponge phantom at 1.5 and 3.0 Tesla.
PURPOSE We aimed to develop a predictive model for lung water content using ultrashort echo time (UTE) magnetic resonance imaging (MRI) and a sponge phantom. MATERIALS AND METHODS Image quality was preliminarily optimized, and the signal-to-noise ratio (SNR) of UTE was compared with that obtained from a three-dimensional fast gradient echo (FGRE) sequence. Four predetermined volumes of water ...
متن کاملMagnetic Resonance in Medicine 000:000–000 (2011) Ultrashort Echo Time Imaging Using Pointwise Encoding Time Reduction With Radial Acquisition (PETRA)
Sequences with ultrashort echo times enable new applications of MRI, including bone, tendon, ligament, and dental imaging. In this article, a sequence is presented that achieves the shortest possible encoding time for each k-space point, limited by pulse length, hardware switching times, and gradient performance of the scanner. In pointwise encoding time reduction with radial acquisition (PETRA...
متن کاملUltrashort echo time imaging using pointwise encoding time reduction with radial acquisition (PETRA).
Sequences with ultrashort echo times enable new applications of MRI, including bone, tendon, ligament, and dental imaging. In this article, a sequence is presented that achieves the shortest possible encoding time for each k-space point, limited by pulse length, hardware switching times, and gradient performance of the scanner. In pointwise encoding time reduction with radial acquisition (PETRA...
متن کاملOptimized three-dimensional fast-spin-echo MRI.
Spin-echo-based acquisitions are the workhorse of clinical MRI because they provide a variety of useful image contrasts and are resistant to image artifacts from radio-frequency or static field inhomogeneity. Three-dimensional (3D) acquisitions provide datasets that can be retrospectively reformatted for viewing in freely selectable orientations, and are thus advantageous for evaluating the com...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Magnetic resonance in medicine
دوره 70 5 شماره
صفحات -
تاریخ انتشار 2013